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Abstract—We study state estimation via wireless sensors
over fading channels. Packet loss probabilities depend upon
time-varying channel gains, packet lengths and transmission
power levels of the sensors. Measurements are coded into packets
by using either independent coding or distributed zero-error
coding. At the gateway, a time-varying Kalman filter uses the
received packets to provide the state estimates. To trade sensor
energy expenditure for state estimation accuracy, we develop a
predictive control algorithm which, in an online fashion, deter-
mines the transmission power levels and codebooks to be used by
the sensors. To further conserve sensor energy, the controller is
located at the gateway and sends coarsely quantized power incre-
ment commands, only whenever deemed necessary. Simulations
based on real channel measurements illustrate that the proposed
method gives excellent results.

Index Terms—Packet loss, power control, scheduling, source
coding, state estimation, wireless sensors.

1. INTRODUCTION

HE interest in estimation and control over lossy commu-
T nication links has increased tremendously in recent years;
see, e.g., [1]-[3]. In particular, with the rapid evolution of wire-
less sensor networks, see e.g., [4]-[6], the use of wireless sen-
sors (and actuators) has become an interesting alternative. The
driving force behind this evolution from wired to wireless is the
low deployment cost: There is no need for extensive wiring, ei-
ther in new installations or for upgrading old systems. In addi-
tion, wireless sensors and actuators can be placed where wires
cannot go, or where power sockets are not available.
A drawback of using wireless communication channels lies in
that they are subject to fading and interference, which frequently
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lead to packet errors. Depending on the application, the wireless
channel can be constant or time varying. The time variability
may be caused by moving objects, vehicles, people, and so forth.
Also, the receiver or the transmitter can be mounted on a moving
object, which may be the case in process industry. Therefore, in
addition to the propagation path loss, the channel may be subject
to either slow or fast fading, or both.

Beside the fading channel, another important issue, which
arises in the absence of power sockets, is the need for energy
conservation. Even though power scavenging is presently a hot
topic in wireless sensor research, saving energy is of utmost im-
portance to avoid unnecessary maintenance, such as the replace-
ment of batteries; see, e.g., [7]-[10].

Interestingly, the time-variability of the fading channel can
be compensated for by adjusting the power levels and also the
lengths of the transmitted packets. Indeed, the packet loss prob-
abilities depend, in a nonlinear fashion, upon the time-varying
channel gains, the packet lengths and the power levels used by
the sensors. To keep packet error rates low, high transmission
power and short packet lengths need to be used. Unfortunately,
using high transmission power is not an option with wireless
sensors, since sensors are unavoidably limited in power, compu-
tational capacity and memory [7]. Also, sending short packets
will lead to large quantization effects, if coding is not done with
care.

In this paper, we will present a power and coding control al-
gorithm for state estimation with wireless sensors. In our archi-
tecture, several sensors take noisy and possibly different output
measurements of an autoregressive moving average (ARMA)
stochastic process. These measurements are coded and trans-
mitted over a fading channel (generating random packet loss)
to a single gateway. Received packets are then used to remotely
estimate the system state sequence by means of a time-varying
Kalman filter.

To keep the sensors simple and energy efficient, sensor nodes
do not communicate with each other. Thus, joint coding of the
measurements taken by different sensors is not possible. Instead,
coding needs to be carried out either independently or with sep-
arate encoding followed by joint decoding at the gateway. This
distributed source coding problem is a widely studied concept
in information theory; see, e.g., [11]-[13]. One such technique
is named zero-error coding [14], which is what we will use in
this work.

Within the setting described above, our main contribution lies
in developing a centralized dynamic controller, which is located
at the gateway and jointly decides upon the transmission power
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levels and coding method to be used by each sensor. The con-
troller uses elements of nonlinear (stochastic) predictive con-
trol [15], [16].! It trades sensor energy use for estimation accu-
racy. The latter is quantified by the expected value of the Kalman
filter covariance matrix. To further conserve energy, a pre-de-
signed set of codebooks is stored at the sensors and the proposed
controller sends only codebook indexes and coarsely quantized
power increments to the sensor nodes, whenever deemed neces-
sary. Consequently, the system to be controlled is not only non-
linear and stochastic (due to the occurrence of random packet
errors), but also subject to finite-set constraints on decision vari-
ables, i.e., the power level increments and codebook indices.
Key to keeping the computational burden of calculating the op-
timal codebook indexes and power commands limited is the fact
that the occurrence of packet errors constitutes a binary random
variable. Thus, expected values can be exactly evaluated via
finite sums over the possible transmission outcome scenarios,
i.e., no integrals need to be evaluated or approximated. The
present paper extends our recent works [21], [22] by incorpo-
rating coding of the sensor measurements into the formulation.

An outline of the remainder of this work is as follows: In
Section II, we state the wireless state estimation problem in
precise terms. Sections III-V revise elements of source coding,
wireless transmission and state estimation which are relevant
for power and coder design. The proposed control algorithm
is then presented in Section VI. Computational aspects are
discussed in Section VII, where also a suboptimal algorithm
is presented. Simulation results are included in Section VIII.
Section IX draws conclusions. Additional information on coder
design is given in the Appendix.

II. PROBLEM STATEMENT

Consider a stationary ARMA process described in state-space

form via:

z(k+1) = Az(k) + w(k), keNg={0,1,...} (1)
where A € R > n, € N 2 {1,2,...} is the system ma-
trix and © = {z(k)}ren, is the state sequence. The initial
system state is zero-mean, but otherwise arbitrary distributed
with covariance Py € R™=*"=, The driving noise process w =
{w(k)}ren, is also arbitrary distributed; each w(k) is zero-
mean with covariance matrix ().

To remotely estimate the state sequence z, a set of M € N
wireless sensors are used. Each sensor m provides a scalar noisy
measurement signal, say Y., = {ym (k) }ren,, where

Ym(k) = Cx(k) + v (k), me{1,2,...,M}. (2)
In (2), vm = {vm(k)}ren, is an arbitrarily distributed zero-
mean noise process, where each v,,, (k) has covariance R, .

The values y,,,(k) are coded and then transmitted through
wireless links to the gateway. The received signals are then used
to remotely estimate the state of the system (1). Fig. 1 depicts
the overall configuration of the system under study.

IRelated techniques have also been used in the context of AD conversion
[17], digital channel equalization [18], discrete coefficient filter design [19], and
quantization in filter banks [20].
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Fig. 1. State estimation with M = 2 wireless sensors.

The distinguishing aspect of the problem at hand lies in that
the use of a wireless channel introduces random packet loss.
Loss probabilities depend upon the propagation medium, but
are also affected by packet lengths and power levels used by the
transmitter. In fact, for given channel gains, lower loss probabil-
ities can be achieved by using shorter packet lengths and higher
transmission power. Hence, the design of the state estimation
scheme in Fig. 1 involves trading sensor battery use for state es-
timation quality. There also exists a tradeoff when designing the
coding method for the sensor measurements, since reducing the
bit rate (and, thus, the number of bits contained in one packet)
reduces the total transmission energy, as well as the probability
of packet error. However, low bit rates, unfortunately, also leads
to large quantization effects in the transmitted signals.

In Section VI, we will propose a centralized control algo-
rithm, which can be implemented at the gateway and aims to
achieve an optimal tradeoff between sensor energy use and state
estimation accuracy. For that purpose, the controller determines,
in an online fashion, the power levels, bit rates, and coding
schemes to be used by the M sensors. Before presenting our
algorithm, we will first describe the components of the scheme
in Fig. 1, namely the coding schemes used by the sensors, the
wireless channels, and the state estimator used at the gateway.

III. CODING THE SENSOR MEASUREMENTS

Each sensor node is equipped with an encoder, denoted &,,,
which maps each measurement value y,, (k) € R to a sequence
of bits s,,, (k). For that purpose, &£, consists of two components:
a scalar uniform quantizer, denoted Q,,,, and an entropy coder,
EC,,; see [23] for an introduction to source coding. At the
gateway, the received symbols are then passed through a joint
entropy decoder and a reconstruction function which outputs the
values 9, (k); see Fig. 2. The entropy coders can either perform
independent coding or distributed zero-error coding (ZEC) at a
given set of pre-defined expected bit rates. The gateway deter-
mines, at each time-instant, which type of coding is to be used
by the sensors (and at which bit rate) and communicates this de-
cision to the M coders.

A. The Quantizers Q,,

Uniform scalar quantization can be implemented by simply
setting the quantizer output ,, (k) as

)= | 22651

where |-] denotes rounding to the nearest integer and where
A, (k) is the stepsize at time k. The associated reconstructed
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Fig. 2. Distributed Coding with M = 2 sensors. Measurements y; (k) and
y2 (k) are quantized, entropy coded and transmitted over a fading channel. At the
receiver, Error detection (ED) and reconstruction is performed yielding g1 (k)
and 92 (k).

signal is then obtained by applying the inverse scaling, i.e.,
Im(k) = im(k)An, (k). The stepsizes A,, (k) are related to
expected bit rates b,, (k) according to [13], [23]

bin (k) ~ H(im (k) = h(ym(F)) —loga(Am (k)  (3)

where H(i,,(k)) denotes the discrete entropy of i,,(k), and
h(ym (k)) is the differential entropy of y,, (k).

There exists a tradeoff between bit rates of a quantizer, and
the distortion introduced, namely

D (k) 2 E|lym (k) — Gm (k)|

(A (R)? 1N Sa(h(ynn (B) b (k)
T2 _(12) @)

where we have used (3). Thus, larger bit rates give smaller quan-
tization errors. However, larger bit rates also give rise to larger
packets to be transmitted and, thus, come at the expense of more
energy use and channel utilization. Consequently, bit rates have
to be assigned carefully. This forms one of the main themes of
the present work.

Example 1 (The Gaussian Case): If y,, in (2) is a stationary
Gaussian process, then, under high-resolution assumptions, its
differential entropy is given by

1
h(ym) = 5 logz (2mear, ). ®)

The approximation in (4) then gives that the expected distortion
of an entropy-constrained scalar uniform quantizer satisfies

e .,
Do (k) & Eagmz—?bm (k) (6)

where the variance of y,, and the covariance of z are

sz = CmPTO;Ir: + Rm and P?: = AP?:AT + Q (7)

Y

B. Entropy Coding

Each entropy coder EC,,,, see Fig. 2, consist of a finite col-
lection of, say 7., codebooks. These depend on the bit rate b,,,
and the type of coding used. Entropy coding can be performed
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by a simple table-lookup since the quantization operation di-
rectly gives the index of the codeword in the table.

1) Independent Coding: The simplest way of performing en-
tropy coding on %,, is to use independent coding for each of the
M quantizers. Since this requires a codebook for the entropy
coder for every possible choice of scaling factor A,,(k), it is
necessary (due to memory considerations) to discretize the al-
phabet of A,,,(k). This is equivalent to discretizing the set of
possible b, (k) values; see (3). Discretization can be performed
offline, and in advance, through computer simulations.

2) Distributed Source Coding: In distributed source coding
schemes, the designer has the freedom to choose the hierarchy
between individual coders. We will adopt an asymmetric ZEC
strategy [14]. We, thus, first quantize the measurements inde-
pendently using the scalar quantizers described in Section III-A
and then use dependent entropy coders, i.e., coders which de-
pend upon the statistics of other plant outputs. (They do not de-
pend upon the actual realizations.)

Example 2 (Asymmetric ZEC): One of the coders, say ECq,
is the dominant coder. It performs independent coding as
described above. Hereafter, another coder, say ECs, performs
independent scalar quantization followed by entropy coding,
where now the entropy coding is done with respect to the
entropy code of EC;. This will generally give a smaller bit rate,
than if independent coding is used.

If the gateway receives both s1 (k) and s2(k), then, with ZEC,
it is possible to reconstruct g1 (k) and 2 (k). If only s1 (k) is re-
ceived, then the gateway can still obtain g, (k), but, of course,
not g (k). However, if only so(k) is received, then the gateway
cannot reconstruct neither §; (k) nor §»(k). Consequently, if
channel 1 and 2 are both reliable or if, at least, the dominant
channel is, then it will often be beneficial to employ ZEC. On
the other hand, if all channels are poor, then often independent
coding will give better performance. Independent coding does
not exploit the redundancy between the sensors in the encoded
data, which gives enhanced robustness in the case of transmis-
sion errors. This will become apparent in the simulation results
presented in Section VIIIL. O

It is important to note that quantization is performed exactly
in the same manner for ZEC and for independent coding. Thus,
the distortion due to quantization (whenever measurements are
reconstructed) remains the same and is given by (6). The gain
by using ZEC is a reduction in the number of bits required for
representing the set of encoded measurements, {s,,}, i.e., on
the effective bit rates (or packet lengths) as seen by the commu-
nication channel.

In the sequel, b,,(k) > 0 denotes the bit rates obtained
after entropy coding. With independent coding, we have
b (k) = byn(k), see (6) and (3).2 On the other hand, ZEC
often gives by, (k) < by, (k), see simulation results included in
Section VIII. Some additional background on ZEC is given in
the Appendix.

Remark 1 (Exploiting Temporal Correlation): Given (1), one
could reduce bit rates further by taking into account the temporal
correlation in each signal y,,,. This can be done, for example,

2We assume that the expected packet length is equal to lN)m(k,), i.e., we do
not explicitly take into account any channel coding.
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by encoding innovations, requiring more complexity at the sen-
sors. Furthermore, due to possible packet dropouts, care must
be taken to guarantee that the encoder and decoder are synchro-
nized. In the present work, we restrict our attention to simple
and robust encoding schemes where the current measurements
are encoded independently of past values. O

IV. TRANSMISSION EFFECTS AND ENERGY EXPENDITURE

Since the M links between sensors and gateway are wireless,
see Fig. 1, transmission errors are likely to occur. In this section,
we will give details on how packet loss probabilities depend
upon the time-varying channel gains, packet lengths { l;m}, and
power levels used by the sensors.3

We will model transmission effects by introducing the M ar-
rival processes Ym = {¥m (k) }reny:

(k) = { 1 if sm(k.) arrives error-free at time k ®)
0 otherwise.

The associated success probabilities depend on the propagation
environment, on b,, (k), and on the transmission power used by
the sensor radio power amplifiers, which we denote as w,, (k).
To be more specific, for i.i.d. bit-errors the conditional success
probabilities satisfy

P{vm (k) = 1 (k), gm (k) bin (k) } = A (k) (9)

where ¢,,(k) denotes the channel power gain, i.e., the
square of the magnitude of the complex channel4, and
Bm(+):]0,00) —[0,1] denotes the bit-error rate (BER). The
latter is a monotonically decreasing function, which depends
on the modulation scheme employed. For simplicity, we shall
in the sequel refer to g,,, (k) as the channel gain.

Example 3 (Transmission Model): 1If binary phase shift
keying is used over an additive white Gaussian noise channel
with constant signal-to-noise ratio SNR, then

8= fo (\/ZSNR) (11)
where fq(2) £ (1/V27) [° exp (—n?/2)dn; see [24].

Although the above model is only valid in the time-invariant
ii.d. case, we shall adopt it also for time-varying channels,
power levels and bit rates. For that purpose, we introduce the
instantaneous signal-to-noise ratio for each channel m via’

_ gk (h)
TkBT ’

3In the present work, we will assume that sensor data is not affected by Mul-
tiple Access Interference (MAI). Extensions of our framework to include MAI
does not present conceptual difficulties.

SNR,, (k) me{l,..., M}

4Note that ¢, (k) is here defined to include also path-loss, power amplifier
efficiency, antenna gain and noise figure.

5SNR,, (k) denotes the signal-to-noise ratio at the receiver, after the matched
filter.
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where kp is the Boltzmann constant, 7" is the temperature and
r is the channel bit rate. We furthermore adopt a block fading
model, where the channel is constant over the duration of one
packet, but may be subject to fading between packets. Expres-

sion (10) then gives
by (k)
—) ) . (12)

Am(k) = (1 ~ fo (

We will use this model in Section VIII. ]
It follows from (10) [see also (12)] that one can improve
transmission reliability and, thus, state estimation accuracy for a
given propagation environment by transmitting shorter packets
and/or by simply increasing the power used by the transmitter.
Unfortunately, as we have seen in Section III, smaller values of
packet lengths b,,, (k) will lead to larger quantization distortion.
Furthermore, when using wireless sensors, it is of fundamental
importance to save energy, since sensor nodes are expected to
be operational for several years without maintenance. This mo-
tivates us to use the available energy resources with care.
Before proceeding, we note that one can quantify the energy
used by each sensor m € {1,..., M} at a given (discrete) time

instant, k, via Ep, (b, (k)um (k)), where

. b (k) s () . .
B (b (k) (k) £ { 0, e iizmgii i 8
’ " (13)

Here, E'p denotes the processing cost, i.e., the energy needed
for wake-up, circuitry and sensing.

Due to physical limitations of the radio power amplifiers,
power levels are constrained according to

0 <um(k) <up®, VEeNy, Vme{l,2,...,M}

(14)

for given values {u2**}. Thus, the maximum transmission en-
ergies per measurement value are given by

max gg}tax max
(ETX )m 2 ( ) Uy,

r

me{1,2,...,M}. (15)

V. STATE ESTIMATION WITH INTERMITTENT SENSOR LINKS

In the present work, we will assume that the data transmitted
incorporates error detection coding [24]. Hence, the gateway
knows, whether packets received from the sensors contain errors
or not. Faulty packets will be discarded when reconstructing
the measurement values and when estimating the system state;
cf. [25]. Thus, for state estimation purposes, the system amounts
to sampling (1) and (2) only at the successful reconstruction
instants of each sensor measurement.

To formulate the state estimator, we introduce the M binary
stochastic reconstruction processes

O = {0 (k) rengg, m € {1,2,..., M}

B () = { 1 if § (k) can be reconstructed at time &

. (16)
0 otherwise.
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Clearly, if at time k, independent coding is used, then the re-
construction success of 4, (k) depends on the transmission out-
come of link m, i.e., we have

vm e {1,2,...

O () = {’ym(k) if w, (k) > 0, M.

0 if up, (k) =0,

On the other hand, if, at time k&, ZEC with dominant coder®
EC,,,« is used (see Section III-B-2)), then successful reconstruc-
tion of ¢, (k) also requires that g, (k) be successfully recon-
structed. Thus, with ZEC, the reconstruction processes 6, (k)
are given by

if Uy (K )t (k) > 0,

_ S mB)yme (),
O (k) = {o, if wn (R)upe (k) =0, (7
forallm € {1,2,...,M}.
A key point is that the realizations in
0% £ {m(k — £)}e>0, me{l,..,M} (18)

are available at the gateway at time k. Thus, the time-varying
Kalman filter (KF) for the system (1) with output matrix

01(k)C4

C(k) £ (19)

Orr(k)Cr

can be used at the gateway. It gives the best linear state esti-
mates. These are given by
Z(k+1)

= Az(k)+ K (k+1) (§(k+1)—C(k+1)Ai(k)) (20)

where

g(k+1
K(k

Pk+1
R(k

and where {D,,,(k)} are the distortions introduced by quanti-
zation and, thus, depend upon the bit rate chosen; see (6). The
recursion in (21) is initialized with P(0) = P, and £(0) = 0.

It is worth emphasizing that C(k), K (k) and P(k) are sto-
chastic. Furthermore, the recursion (21) will, in general, not
converge to a steady-state value for P(k), even if the reconstruc-
tion processes {6, (k)} were i.i.d. Bernoulli [26]. However, un-
like in the unstable case considered in [26], we here assume that
the system (1) is stable. Thus, P(k) will remain bounded; see
also simulations included in Section VIIIL

Example 4 (Scalar System With Two Sensors): Suppose that
A € R and that there are two sensors measuring the system
state z(k) with C; = Cy = 1. Expression (21) gives that, if

1(k+1) G2(k+1) Unm (k+1)]
P(k)C(K)T (C(k)P(K)C(K)™ + R(k))
AP(K)AT +Q — AK(k)C(k)P(k)A™

dlag (R1 + Dl(k) .. Ry + D]\[(k)) 21

PRI

> 1> 1> 1>

\_/\_/vv

6Here, the subscript m* is used to indicate that the current signal refers to the
dominant coder and associated signals.
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01(k) = 02(k) = 0, then K (k) = 0 so that &(k) = Az(k —1).
On the other hand, if §; (k) = 1 and #5(k) = 0, then
P(k)
P(k)+ Ry + Dy (k)
P(k) (41(k) — Ai(k - 1))
P(k)+ Ry + Di(k)

K(k) =

a(k) = Ai(k — 1) +

If 61 (k) = 62(k) = 1, then the filter gain becomes

K(k) = aP(k) [ Ry + Da(k) Ry+ Dy(k)]

with
o~V & (P(k)+Ry+ Dy (k))(P(k)+ Ry+ Da(k)) — P(k)>.

Note that in all situations, the Kalman filter uses all successfully
reconstructed measurements. In fact, whenever there is infor-
mation correctly received from the sensors, it is included in the
Kalman filter yielding a nonzero filter gain. O

Remark 2 (The Gaussian Case): If the initial state z(0), the
driving noise w, the measurement noises v,, and the quan-
tization noises would all be Gaussian and independent, then
the above KF would also provide the conditional mean and
covariance

i(k) 2 E{a(k)| 5", 6"}
Py 2 E{ 2(06) = 0() (1) - ()| %6

where the expectation E is taken with respect to the distributions
of w,v1,...,var,2(0), where the sequence §* contains all re-
constructed measurements of the M sensors up to time k&, and
where

(22)

Properties of this, and related, state estimators have been studied
within the context of state estimation over lossy links with con-
stant dropout probabilities; see, e.g., [26]-[29]. It is worth em-
phasizing that in the case under study in the present work, trans-
mission probabilities are time varying. Thus, the tools devel-
oped in [26]-[29] cannot be applied directly. O

VI. PREDICTIVE CONTROL OF SENSOR POWERS AND CODING

In the previous sections, we have shown that the design of
sensor powers and bit rates involves a tradeoff between dis-
tortion introduced by coding, transmission error probabilities
(and, thus, state estimation accuracy), and energy consumption.
In what follows, we will present a predictive control strategy
which takes into account energy consumption and estimation
quality over a future prediction horizon. To keep processing at
the sensors to a minimum, the control algorithm is located at the
gateway. It provides the power levels and the codebook indexes
to be used by the M sensors.

A. Constraints

In order to save energy required to process the received sig-
nals at the sensors, we would like to keep the signaling from the
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gateway to the sensors as low as possible. In particular, the con-
trol signal will contain the codebook indices, say

(k) 2 [jr(k)  ja(k) k) eg @3
and information on the power levels. Here, we will use coding
ideas frequently used in power control architectures for cellular
networks; see, e.g., [30]. The controller, thus, sends coarsely
quantized power increments, say Ou,,(k), rather than actual
power values, u,(k), to each sensor m € {1,2,..., M}. All

signals {6u,, } are constrained according to

Sum (k) €Uy, VEENy, Vme{l1,2,....,M} (24)
where {U,,} are given finite sets, each having a small number
of elements; see also [31].7

Upon reception of the pair (6t (k), jm (k)), each sensor m
chooses the codebook j,,,(k) and reconstructs the power level

to be used by its radio power amplifier by setting

U (k) = U (k — 1) + dum (k). (25)

Note that in addition to the constraints on actual power levels,
see (14), the quantization constraint on the transmitted power
control values, see (24), imposes

Su(k) e U2 Uy x Uy x --- x Uy, VkeN (26)
where
Su(k) £ [Suy (k) supr(k)]", VkeNy.  (27)

B. Cost Function

We will quantify estimation accuracy via the trace of the ma-
trix P(k) defined in (22), which, in the Gaussian case, would
correspond to the posterior covariance, see Remark 2.

At each time instant & € Ny, the predictive controller calcu-
lates the value of P(k), which results from iterating (20)—(21)
for the (known) past realizations of reconstruction outcomes 6,
see (18), and uses channel gain predictions over a finite horizon
of fixed length N. These will be denoted via:

N

and are assumed to be error-free. With this information, the con-
troller minimizes the finite-set constrained cost function

V(5U, J) £ E{Vi(O(k), ])|P(k), G(k),6U, ] }+pVa (8T, J)
(29)
7In some wireless sensor technologies, transmission power can be selected

only from a finite number of power levels. In these cases, the quantization con-
straint (24) is a system requirement, see also [32].
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where8

k+N )
Vi(O(k),J) = Z trace(P’(¢))

e=k+1

kN M i
Vo(8U,J) 2 3" 3 (b, (0)u,,(4))

(=k+1m=1

(30)

quantify the expected estimation quality and the associated en-
ergy expenditure. Thus, p > 0 is a design parameter which al-
lows one to trade estimation accuracy for energy consumption.

The stochastic aspect of the power and bit rate control
problem, namely the possibility of transmission errors, is
captured in (29) by taking expectation with respect to the
probability mass distribution of the discrete random variable
O(k), defined via

O (k+1) 0 (k+2) ... 0 (k+N)
oK) 2 O(k+1)  05(k+2) ... O(k+N)

0 (k1) 0 (k42 o (k+ N
]U( ) ]\I( ) ]LI( ) (31)

In this matrix, the entries {6.,(k + £)} are predictions of the
reconstruction outcomes of the values {g, (k + £)}; see (16).
Thus, the probability mass distribution of ©(k) depends upon
the tentative power levels {u.,, (k+£)}, the tentative future code-
book indexes {j/,(k + £)}, and the channel gain predictions
{gm(k + £|k)}, see (10) and (28).

For a given realization of ©(k), trace(P’(¢)) is obtained
from (22) after iterating (20)—(21) with initial value P(k + 1);
En (b, (&)ul,(£)) is the energy function (13) evaluated for the
tentative values u/, (¢) and b, (£), the latter being the expected
bit rate of the j!, (£)th codebook, where

01"

The decision variables, i.e., the tentative future codebook in-
dexes {j,(k + £)} and power value increments {éu.,(k +£)},
are collected in [see (23) and (27)]:

(32)

su/(k +1) Jk+1)
su/(k +2) 0k +2)

U = , = _ (33)
§u'(k + N) J'(k+N)

Following (25), 6U yields the tentative future power levels
{u!,(£)} in (30) via

(6 =l (0= 1)+ 8t (£),

m

e {k+1,k+2,... k+N}

’

starting from the current levels, i.e., where u!,, (k) = u, (k).

81n the sequel, primed variables refer to predicted values of the corresponding
physical variables.
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C. Moving Horizon Optimization

As described in Section VI-B, at each time instant £ € N,
and given channel gain predictions in (28), the control algorithm
finds the optimizing sequences

(6U°Pt, Jort) £ argmin V(6U,J) G4

subject to the constraints

SUeUN, JegN

0<u,(6) <um™, Vee{k+1,....k+ N}, ¥m

where
UN2UxUx---xU, JVNE2TxTx---xJ.

In this work, we will adopt the moving horizon principle; see,
e.g., [15] and [20]. Thus, at each time k, only the indexes and
power updates corresponding to the time instant k + 1 are trans-
mitted to the M wireless sensors. That is, only the following
values are used®:

0pr ] 6UCP"
Oju ] JOpt.

Su(k +1)°P* £ [Iyy Oy
A

J(k+1)P = [Ty On

At the next time instant, namely k+ 1, the optimization proce-
dure is repeated, giving rise to power control increments du(k+
2)°P* and codebook indexes j(k + 2)°Pt. This procedure is re-
peated ad infinitum.

The prediction horizon N allows the designer to tradeoff per-
formance versus online computational effort. Larger horizons
give, in general, better performance since more information is
taken into account in the decision process.!0 Computational is-
sues are discussed in Section VII.

The proposed algorithm jointly decides upon the power
levels and codebooks of all M sensors by using future channel
gain predictions. The resulting control law respects finite set
and magnitude constraints for the power level signaling, see
Section VI-A. We emphasize that, for general time-varying
channels, the power levels and codebooks thus obtained are not
constant, but are assigned dynamically through minimization
of the criterion in (29) and, therefore, optimize the resulting
performance.

Remark 3 (Channel Gain Predictors): To calculate future
success probabilities, one requires channel gain predictions, see
(28). For that purpose one can use techniques described, e.g., in
[33] and [34]. Note that, even if received packets are discarded
for signal reconstruction, they may still be used for channel gain
estimation and prediction. O

VII. COMPUTATIONAL ASPECTS AND SUBOPTIMAL ALGORITHM

The controller presented in the previous section uses a brute-
force approach to determine the optimal power increments and
codebooks. In fact, all combinations of possible bit-rates (with
and without zero-error-coding) and power levels of all sensors

97 denotes the M x M identity matrix and 0 5, the all zeros M x M matrix.
10The effect of IV has been studied in other contexts; see, e.g., [17]-[20].
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are examined. Based upon the cost function V(6U, J), which
takes into account state estimation accuracy and energy expen-
diture, the jointly optimal combination is chosen.

Whilst minimization of V' (6U, J) in (34) is carried out at the
gateway, where computational issues play less of a role than at
the sensors, in some situations, a brute-force search might be
impractical due to a large number of possible combinations. In
what follows, we will briefly outline some computational as-
pects and also present a computationally convenient strategy for
approximately solving the optimization problem (34).

A. Computational Issues

Despite the fact that we are dealing with a stochastic non-
linear and partially discrete optimization problem, which has no
closed-form solution, solving (34) in real-time is surprisingly
simple, due to the binary nature of the matrix of predicted future
reconstruction outcomes O(k), see (31). To be more precise,
O (k) takes only values in a finite set, say {O; }icqo,1,... 25 _1}-
For a given codebook sequence J € J N and current value
P(k), each realization ©; corresponds to a particular value
V1(0;,J); see (30). Consequently, by using the law of total
expectation, (29) reduces to evaluating a finite sum, i.e., we
have

E{Vi(O(k), J)| P(k),G(k),6U, ]}

= Z_ PiE{Vi(O(k), ])|(P(k),G(k), 8U, ),
1=0
O(k) = ©,}
= Z_ PiVi(©;,])
1=0

where P; £ P{O(k) = ©;| G(k), 6U, J } depends upon future
channel gain predictions, power levels and bit rates to be used
by the sensors. These probabilities can be calculated by simply
forming the product of the individual terms A, (¢); see (10).
Since the optimization (34) requires evaluating V' (6U, J) for at
most!|U|V| 7| possibilities of the pair (6U,.J), the number
of calculations to be carried out at each time instant is, at most,
proportional to (2M|U||J|)"V. Note that, if ©(k) would be a
continuous random variable, then the optimization procedure
would be more involved; cf. [35].

B. Suboptimal Algorithm

As seen above, the proposed power and bit rate control al-
gorithm, involves an exhaustive enumeration of a finite set of
code books, power value increments and transmission scenarios.
Thus, in practice, the algorithm may become too complex to
implement. To simplify calculations, one could use approxima-
tions based upon convex relaxations, e.g., as described in [36].
Alternatively, the moving horizon optimization idea underlying
the controller of Section VI motivates us to formulate a subop-
timal algorithm as presented next.

The online computational load can be significantly reduced
by limiting the search set for power increments to a subset

U] denotes the cardinality of the set U; | 7| that of 7.



4818

U(k) < UN and by restricting the code book to be con-
stant over the prediction horizon. This leads to suboptimal
sequences, say SUSYP=°PY(k) and JSU"P—oPt(k); see (34). A
useful choice for D(k), which has been successfully employed
in the context of audio quantization [37], can be made by
re-using the sequence obtained at the previous step. To be more
specific, suppose that, at time k& — 1, the suboptimal sequence
of increments $§US"P~°Pt(k — 1) has been found and form the
shifted sequence:

Orpr Iy Opg Onr
© Oy Iy On :
sU*(k) = O
Onr
O O I

X OUSWPTOPY (| — 1),

To compute the power increment sequence at time k, we will
make use of the previous predicted values contained in §U* (k).
More precisely, the reduced search set at time k is formed via
the Cartesian product U(k) = U*(k) x U, where U is as in (26)
and where U? (k) contains only §U* (k) and its immediate neigh-
bors. The cardinality of U(k) is, at most, equal to 3M(N=1|U|.
Clearly, in applications where |U| > 3, the cardinality of U(k)
is smaller than the cardinality of UY. The number of calcula-
tions of this suboptimal algorithm is, at most, proportional to
3M(N—1) |lU||J|2MN,

Example 5 (Reduced Search Set): Consider a setting with
M = 2 sensors, constraint sets U; = Uy = {—4,-3,...,4}
and a horizon N = 4. The optimization in (34) requires the con-
troller to evaluate (|U, | - |U2|)N = 81% = 43046721 possible
power level increments 6U .

To illustrate how much can be gained by using the suboptimal
algorithm described above, suppose that, at time k£ — 1, the sub-
optimal sequence of increments

sUSPoPt (k1) =[2 3 4 2 1 3 -1 4]"
has been found. We then have

SURK)=14 2 1 3 -1 4]"
and
U(k) = {{374} x {1,2,3}} x {{071,2} x {2,3,4}}
x {{—27—1,0} x {374}} x {tu1 x Uz}

which contains only 6 x 9 x 6 x 81 = 26244 elements. O

VIII. SIMULATION STUDY

In this section, we will apply the predictive power and coding
control algorithm proposed in Section VI to amodel (1). The ini-
tial state is taken from a Gaussian distribution with covariance
matrix Py = 0.315. The driving noise is also Gaussian, with
variance () = 1/21[5. The system matrix is chosen as

| 1.6718 —0.9048

A 1 0
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A. Experimental Setup

We simulate a system consisting of M = 2 sensors with
output matrices C; = [1 0], Co = [0 1], and Gaussian mea-
surement noises with variances R = Ry = 1/100. The con-
straints on the power values are uy"™* = uy™* = 0.4 mW. Bit
rates are restricted to a maximum of b*** = b5*** = 7 bits.

Channel data were acquired in an office space area at the
Signals and Systems Group of Uppsala University, Uppsala,
Sweden. The transmitter was placed in an office and the re-
ceiver was located 8 m away in the corridor outside the office.
The transmitter position was fixed, whereas the receiver was
mounted on a rail allowed to move over a distance of 1.25 m,
perpendicular to the corridor. Measurements were collected at
the 2.4 GHz ISM band. The top diagram of Fig. 4 illustrates the
channel gains of two realizations, one with horizontal and one
with vertical polarization.!2 The channel gains are displayed as a
function of relative position, and, therefore, correspond to what
a receiver would perceive if it moved through space. The gains
shown in Fig. 4 also give an indication of what fading to expect,
if objects are moving between fixed sensor and gateway loca-
tions. We note that the channels vary considerably, with some
dips dropping more than 20 dB. Without appropriate dynamic
power control, such large variations would require excessive en-
ergy consumption to avoid frequent transmission errors.

B. Controller Design

To implement the control algorithm proposed in Section VI
we first construct the zero-error coder (along the lines described
in the Appendix) to obtain Table II. The controller parame-
ters are chosen as N = 1 and p = 10° and we adopt the
simple expression (12) for the probability of successful packet
arrival.13 Power increments are restricted to belong to the fi-
nite sets U; = Uy = {0,£10 uW}. To emulate a realistic
scenario, we will assume that the gateway is using only noisy
one-step-ahead channel predictions.14

C. Results

Fig. 3 illustrates the state estimation performance when gy (k)
enters a deep fade located at £k = 3950. See the top diagram
of Fig. 4. From the top diagram of Fig. 3 we note that z; and
T1 essentially coincide everywhere except for the area around
the fading dip. Because of the poor channel gain in go(k), the
predictive controller increases the control action and decreases
the bit rate. Since the control signal saturates, packet errors will
occur and affect the estimation accuracy. This is further illus-
trated in the bottom diagram of Fig. 3, where estimated and

12The channels were found to be well described by time-varying gains. Here
we have assumed a radio power amplifier efficiency of 1/3, a path loss of 90 dB,
and a receiver noise amplification (noise figure) of 10 dB, yielding an average
gain for g (k) and g (k) of —105 dB. At maximum power, this corresponds to
an SNR of 17 dB. It is worth emphasizing that, since we have real channel data,
we do not require to ascribe probability distributions to the fading. However,
information about the underlying fading statistics, can be incorporated into the
formulation, e.g., by averaging (11) over the fading distribution.

3We choose rkgT = 2.3 - 1010 #W, which corresponds to a channel bit
rate r = 40 kbits/s at room temperature.
14Here a normalized prediction error MSE of 0.01 is used. This corresponds

to a prediction horizon of approximately 1/4 of a wavelength of the carrier fre-
quency [33], [34].
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TABLE I
PERFORMANCE COMPARISON BETWEEN PROPOSED VARIABLE BIT RATE
PREDICTIVE CONTROLLER, FIXED RATE PREDICTIVE CONTROLLERS, AND
FIXED LEVEL CONTROLLERS. FIXED LEVEL CONTROLLERS ARE KEPT AT THE
SAME AVERAGE ENERGY AS THE VARIABLE LEVEL PREDICTIVE CONTROLLER

Predictive Controllers Fixed level Controllers
Bit rate Vi [ Vend [V Vi [ Vend [V
[ variable [[ 0.0291 [ 60.3265 | 0.0894 || - [ - [ - |
7 bits 0.0339 | 64.5253 | 0.0984 || 0.0686 | 60.3265 | 0.1289
6.5 bits || 0.0350 | 62.4227 | 0.0974 || 0.0679 | 60.3265 | 0.1282
6 bits 0.0370 | 60.3442 | 0.0973 || 0.0649 | 60.3265 | 0.1252
5 bits 0.0548 | 56.2098 | 0.1110 || 0.0778 | 60.3265 | 0.1382
4 bits 0.1257 | 52.1200 | 0.1778 || 0.1455 | 60.3265 | 0.2058
. T ; "1 T
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Fig. 3. State estimation with power and bit rate constraints: Upper

plot [1 0Jxz(k) (dashed line) and [1 0]Z(k) (solid line); lower plot:
||«(k) — @(k)||? (dashed line) and trace(P(k)) (solid line).

measured estimation errors ||z (k) — 2 (k)||? are compared. Evi-
dently, the measured estimation error increases due to the packet
errors, cf., the bottom diagram of Fig. 4. The estimated state es-
timation error also increases, but not to the same extent. This is
due to the smoothing effect built into trace(P(k)).

Fig. 4 illustrates that the control algorithm tries to find the
best compromise between the two sensor links by manipulating
power levels, bit rates and by using ZEC whenever appropriate.
Because of the constraints in the power levels and bit rates, the
controller cannot fully compensate for the large variability of
the channel gains. This is apparent by inspecting the perfor-
mance around time k£ = 900. Here, the predictive controller
increases the power uo to compensate for the dropping channel
gain go. Since uy saturates, the increased cost due to maximum
power use is balanced by decreasing the bit rate by (less bits per
measurement value require less energy). As is evident from the
low probability of successful packet arrival, A,, the controller
does not fully counteract the fast drop in gs. Since g1(900) >
92(900), the controller decides that Sensor 1 should spend only
little power and also selects Sensor 1 to be dominant in the ZEC
scheme. A similar behavior can be observed for g; at k = 1250,
and for go at k = 4000 and k = 4700, respectively.

It is interesting to note that independent coding, which is
indicated by dots on top of both bit rate graphs b; and by of
Fig. 4 simultaneously, is rarely used. Thus, there is significant
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Fig. 4. System performance with power and bit rate constraints.

redundancy to be exploited among the two channels.!5 At time
k = 2700, both channels have high gains and the power levels
can be kept low while maintaining A\; and A, close to one. In-
stead, energy is spent on decreasing the quantization error by
using the maximum allowable bit rate.

To give further insight, the performance of the variable bit
rate control algorithm presented in Section VI is compared to
predictive controllers which use only independent coding at a
fixed bit rate!¢ and also to schemes which use fixed power levels
at all times. The fixed level controllers are designed to use the
same amount of average energy V> as does the variable bit rate
predictive control algorithm proposed in this work.

We shall evaluate the performance of the different controllers

according to the achieved cost:
V=V+VW (35)

where

5000

Vi= 5000 Z I

quantifies the estimation accuracy, whereas

(k)1

5000 M

Vafop 5000ZZ

k=1 m=1

k)t (F))

refers to the energy use. The results are summarized in Table 1.
We observe that both the fixed bit rate predictive controllers
and the fixed level controllers obtain their lowest total cost V'
[see (35)] for a fixed rate of six bits. For this bit rate, the fixed

15Indeed, this is to be expected since 7 (k) depends on x4 (k).

16These predictive controllers essentially amount to the algorithms introduced
in our recent work [21].
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rate predictive controller, and the fixed level controllers are 9%
and 40% worse, respectively, as compared to the variable bit
rate predictive controller proposed in the present work. Consid-
ering V; only, for this case, these simpler schemes give, 27%
and 123% worse performance, respectively.!”

IX. CONCLUSION

An energy efficient bit rate and power control scheme for state
estimation via wireless sensors operating over fading channels
was presented. The time variability of the fading channels fre-
quently leads to transmission errors with subsequent random
packet drops. State estimation in the face of intermittent obser-
vations was then performed by a time-varying Kalman filter.

In our scheme, the transmission power of the radio power am-
plifier and the bit rate for each of the wireless sensors are con-
trolled by the gateway. For that purpose, we proposed a con-
trol algorithm which utilizes predictions of radio channel gains
and incorporates signal coding. Thus, our proposal amounts to
channel aware source coding. A distinctive characteristic of the
approach taken is that the controller directly aims at optimizing
the tradeoff between estimation quality and energy use. Per-
formance was illustrated on measured channel data acquired
from an office space area. The optimal scheme was shown to
perform significantly better when compared to predictive con-
trollers which use only independent coding at fixed bit rates, and
to fixed power level controllers.

Further work may include studying closed loop stability as-
pects and also the examination of more general wireless sensor
network topologies.

APPENDIX
BACKGROUND ON ZERO-ERROR CODING

One of the key results in distributed source coding is that there
is essentially no loss in coding rate-distortion performance by
doing separate encoding, rather than joint encoding of correlated
variables, when the decoding is done jointly [11], [12]. How-
ever, existing practical distributed coding schemes, which come
close to the optimal joint performance bounds, require forming
long sequences of the variables, thus, incurring large decoding
delays. Fortunately, there exist practical low delay distributed
coding schemes which, at the expense of a somewhat larger rate,
work for arbitrary block lengths, including blocks having only
one value. This is the case in ZEC schemes, which are adopted
in the present work. We next recall some results on bit rate re-
ducing properties of ZEC.

Bit Rates: If coder EC,,- is dominant, then the
expected bit rate (as seen by the channel) is given by
b+ (k) = H(ims(k)). On the other hand, b, (k), n # m* is
lower bounded by the conditional entropy

bu(k) > H (iry (F) i (K)) (36)
where equality can be achieved at the expense of large delays at
the decoder.

"The optimum bit rate and power levels, used here for comparison, are in
general unknown a priori. Thus, in a real application, significantly worse per-
formance for the fixed bit rate predictive controller and the fixed level controller
can be expected.
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Since, for independent entropy coding, we have [see (3)]
bn(k) = H(in(k)) > H(in(k)|in~ (K)),

it follows that we can expect a bit rate reduction which is, at
most

H{(in(k)) = H(in(k)lim- (k) 2 0

bits per sample. Thus, if the measurements are uncorrelated (and
thereby independent since they are Gaussian), then we have
H(in(k)|im+(k)) = H(in(k)) and no rate reduction is pos-
sible. At the other extreme, if 7, (k) is deterministically related
to 4, (k), then H (7,,(k)|im=(k)) = 0, which gives maximum bit
rate reduction.

Note that, in the present case, the amount of correlation be-
tween the measurements depends upon the underlying system
(1) as well as the covariances (Q and R,,. Furthermore, the rate
reduction achieved in practice, depends not only on the inherent
correlation between the measurements, but also on the actual
implementation of the zero-error code.

Design Example: Zero-error coders can be designed by
adopting graph theoretic ideas [14]. To present this approach, let
Y; denote the discrete alphabet of 3;(k) and, for simplicity, let
us consider the case of only two sensors, i.e., i € {1, 2}, where
the second sensor is the dominant one. Let the pair of random
variables ({1, ¢2) be distributed over the product set V; X Vs
according to the joint probability distribution P (g1, §2). Let S
be the support set of (1, 92), i.e.,

S = {(§1,92) € V1 x Vo : P(i1,72) > 0}.

Given the above, we say that distinct 41, 4] € V1 are confusable
if there is a g2 € )» such that (g1,92) € S and (¢},92) € S.
Viewed from this perspective, a zero-error code is a determin-
istic map ¢ such that if §; and ¢} are confusable then ¢(91) #
o(91); see, e.g., [38].

Let G be the characteristic graph of the source pair (1, J2)-
For the case of 7, being the dominant signal, the vertex set of
G is Y. Two distinct vertices g1 and g are connected if they
are confusable. Zero-error coder design amounts to choosing a
graph coloring on G, which is a function that partitions }); into
color classes so that every element of ); has a color and no pair
of confusable elements has the same color. It follows that, if
71 € Y has color ¢, §o € Vo and (§1,92) € S, then (91, 92) ¢
S forall §; € V1,47 # 91. In other words, if g2 is known
at the gateway, then we only have to convey information about
the color of g; in order for the decoder to be able to faithfully
reconstruct .

To design the zero-error coder used in Section VIII, we first
calculate the differential entropies h(y;) = 4.27 and h(ys) =
4.29. The resulting zero-error code depends upon which of the
two variables we choose to be the dominating one. It also de-
pends upon the bit rates of the two scalar quantizers. For this
example, we choose y- to be the dominating one and bit rates
b1 = 2 and by = 3 bits/dim. With this choice, it follows that the
step sizes are A; = 4.82 and Ay = 2.44, respectively.

We now independently scalar quantize y; and y» to obtain ¢
and . Even though the processes have unbounded support, in
practice they will always have bounded support. In our case, it

(37
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Fig. 5. The discrete alphabet J; of ¢, contains 11 elements (rows) and the
reduced set Y| (solid region) contains only seven elements (rows). Similarly,
Y- contains 19 elements (columns) and YV, has 11 elements (columns).

turns out that ¢ is discretized to a finite alphabet }; having 11
distinct elements whereas the alphabet )5 of > has 19 distinct
elements. (Recall that a zero-error code is defined on all pairs
of elements of Y1 X Y, where P(91,¢2) > 0.) The cardinality
of the zero-error code in this example is therefore 11 - 19 =
209. However, several of the pairs (91, 92) € V1 X Vs are very
unlikely. Thus, we can significantly reduce the number of pairs
(and thereby the bit rate) by excluding unlikely pairs. In this
simulation, we choose to keep only pairs where

(g1, 52) [cov(yr, y2)] ™ 1, )T < e (38)
where we set k. = 10. It can be shown that the probability of
being inside this reduced set is given by 1 — exp(—k./2) =~
0.993; see [39].

In Fig. 5, we have shaded the region (solid rectangles) of the
joint probability mass function of ¢; and 92 containing the 29
out of the 209 pairs that satisfy (38). Since only 7 rows and 11
columns contain solid rectangles, it follows that seven distinct
values of 7 and 11 distinct values of g5 need to be used.

Let Y; and )} denote the reduced alphabets containing only
the elements which are in pairs that occur inside the solid region
of Fig. 5. We now obtain the characteristic graph G with vertex
set ). Recall that vertices in this graph are connected, if they
are confusable. Thus, the elements §; and ¢ both in )] are
connected, if they occur in pairs (g1, 92) and (¢}, J2) where
92 € V4, i.e., if they share a node of )5 For example, referring
to Fig. 5, the vertex set of )] consists of the seven rows, here
denoted a to g. To obtain the characteristic graph G we need
seven nodes, which we label from 1 to 7, respectively. This is
illustrated in Fig. 6(a), where Row a corresponds to Node 1,
Row b to Node 2, and so forth. Row a is connected to Row b,
since they share columns. Thus, a line is drawn between Node
1 and Node 2 in Fig. 6(a). Similarly, since Row b is connected
to both Row ¢, and Row d, via overlapping columns, we draw
lines from Node 2 to nodes 3 and 4, respectively. By repeating
this procedure until we reach Row g, the graph in Fig. 6(a) is
readily obtained.
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Fig. 6. Design of zero-error coding: (a) Characteristic graph G and (b) graph
coloring.

TABLE II
BIT RATES WITH 2 DOMINANT. b; IS THE INITIAL BIT RATE, H({;)
IS THE MEASURED DISCRETE ENTROPY, AND b; IS THE MEASURED
RATE AFTER APPLYING AN ENTROPY CODER

b [H@) [ b [ [H@) [ b |

2 1.54 1.55 2 2.06 2.17
3 2.28 2.31 2 2.06 2.17
3 2.31 2.36 3 3.02 3.08
4 3.14 3.15 2 2.06 2.17
4 3.15 3.17 3 3.02 3.08
4 3.16 3.18 4 4.00 4.05
5 4.05 4.06 2 2.06 2.17
5 4.06 4.07 3 3.02 3.08
5 4.08 4.09 4 4.00 4.05
5 4.08 4.09 5 5.00 5.04
6 5.10 5.11 2 2.06 2.17
6 5.10 5.12 3 3.02 3.08
6 5.11 5.12 4 4.00 4.05
6 5.11 5.13 5 5.00 5.04
6 5.11 5.12 6 6.00 6.04
7 6.08 6.09 2 2.06 2.17
7 6.09 6.11 3 3.02 3.08
7 6.10 6.11 4 4.00 4.05
7 6.10 6.11 5 5.00 5.04
7 6.10 6.11 6 6.00 6.04
7 6.10 6.11 7 7.00 7.04

If two nodes in the characteristic graph are not connected,
it means that the two nodes are paired with different values of
y2. This is an important observation. Clearly, given a specific
U2, we know the set of g;’s that are paired with this element
and therefore we also know those that are not paired with the
given element. Thus, nodes that are not connected in the char-
acteristic graph, may be combined into a super-node. For ex-
ample, in Fig. 6(a) we may combine nodes 1, 4, and 7 into a
single super-node. Similarly, nodes 2 and 5 can be combined
into a super-node and nodes 3 and 6 may be combined into a
super-node. This is illustrated in Fig. 6(b).

The problem described above is usually referred to as graph
coloring [14]. In graph coloring, we aim at using the least
number of colors so that all nodes in the graph are colored, but
two nodes that are connected do not get the same color. Graph
coloring is an NP hard problem, but there exist several heuristic
methods that, for our purpose, yield near optimal performance.
It should be clear that a graph coloring on the characteristic
graph of )| effectively reduces the number of distinct elements
of Y; that need to be transmitted to the decoder. In fact, the
number of elements to be transmitted is equal to the number
of colors in the graph. This is so, since, at the decoder, having
received a color as well as any > € )3, one can uniquely
determine the correct j; among the set of g;’s having the same
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color. In the particular case depicted in Fig. 6(b), only three
colors are required.

So far we have been able to reduce the bit rate by only keeping
the most likely outcomes (71, 92) from the quantizers and then
using graph coloring. The bit rate can be reduced further by em-
ploying two independent Huffman entropy codes; one for the set
of colors and one for the elements of ). These codes are de-
signed offline for every pair of bit rates (b1, b2) € {2,...,7} x
{2,...,7} as well as when y; is dominating instead of y». The
resulting numerically measured average bit rates give rise to
Table II.

In the case of more than two sensors, one can either pair sen-
sors and use the above approach independently for each pair,
or also let several sensors be dependent upon a single sensor.
To the best of the authors’ knowledge, how to design efficient
zero-error codes, in general cases, for more than two sensors re-
mains an open problem.
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